Alberta Agriculture Water Measurement "You can't manage what you don't measure."

Lawrence Schinkel Senior Monitoring Tech. Alberta Agriculture and Rural Development Agriculture Water Division Water Resource Branch Basin Water Management Section

Flow Measurement: Flow Metering

Weirs

Flumes

Control Structures

Pipeline Flow Meters

Water Quality

Demonstration Site

Key References: <u>RECLAMATION</u> Managing Water in the West United States Bureau of Reclamation (USBR) Water Measurement Manual

United States Geological Survey (USGS) Environment Canada Alberta Environment

ARD Works closely with:

- 13 Irrigation Districts
- Alberta Environment
- Consultants
- PFRA
- Vendors

Southern Alberta has over 8000 km's of conveyance systems to supply irrigation water to over 1.3 million acres

Alberta Agriculture flow measurement history

Began with Current-Price AA Meter in the early 1980's
Started with Alberta Environment and Environment Canada equipment and methodology

In early 1990's started using Swoffer Velocity Meters (Fibre Optic Technology)
References from USBR & Army Corps of Engineer

ARD Safety Procedure:

- 2 person team
- Life jackets or float coats
- Beacon for truck
- Road/Bridge signage
- Pylons
- Use pulley system instead of
- bridges

- Install small walkways to avoid wading

Manual Flow Metering with Swoffer Velocity Meter

Flow Metering with Doppler wading technology

Flow Metering with Canal Bed Doppler Technology

SonTek Argonaut SW Test Results 2004

Flow in CFS	Reference Flow Difference (%)
4	2.5
15	1.72
165	10.72
560	2.53
Average	4.37

Accoustic Doppler Current Profiling (ADCP)

Acoustic Doppler Current Profiler (ADCP) Hydro Acoustic Measurement

Accoustic Doppler Current Profiling (ADCP) Testing

Alberta Agriculture Testing Protocols & Scenarios:

-High Flow High Velocity River (3000-4000 cfs) -High Depth (10-13 ft) slow flows (300-400 cfs)-Medium Flows (100-300 cfs) -Low Flows (under 30 cfs) -Heavy Weed bed -Concrete Canals -Terra-Nap Liner (Asphalt Liner)

Stream Pro Test August 29th, 2007 South Saskatchewan River vs Environment Canada ADCP Workhorse Earthen River – High Flow

Results: WSC Workhorse = 3600 cfs WSC StreamPro = 3600 cfs Rating Curve = 3600 cfs

Difference to Workhorse = 0% Difference to Rating Curve= 0%

Stream Pro Test August 17th, 2006 **Oldman River at 811 vs Alberta Environment AA Current-Price** Meter Earthen River – Medium Flow **Results:** AENV Current-Price Meter= 400 cfs **ARD** StreamPro = 405 cf

Difference = 1%

2 hours vs 30 minutes

Stream Pro Test August 28th, 2007 **SMRID** Main Canal at 7 Persons **Armoured Canal – Medium Flow VS AA Current Price Meter**, Workhorse & RiverCat **Results:** WSC AA Current-Price = 125 cfs WSC Workhorse = 131 cfs SASK RiverSurveyor =138 cfs ARD Streampro =132 cfs Difference vs AA = 5%Diff vs Workhorse=1% Diff vs RiverCat =5%

Weed growth test at LNID Keho Lake Outlet = Missing Data

StreamPro Testing Results:

Reference Flow Measurement	Flow Volume CFS	% difference
Curve Oldman at Brocket	4130	0
Curve at South Sask	2800	0
Curve at South Sask	2690	0
SMRID Powerplant	980	0.5
SMRID Penstock	945	2
Milk River Curve	565	2
Oldman River with Current Price	400	1
WID A Canal BCW	230	0
Waterton River Curve	150	0
WID Langdon Gate	150	3
Env Canada Current Price	125	5
B2 Swoffer Meter	70	7
SMRID Cipoletti Weir	55	4.5
LNID B9 BCW	33	1.5
Terranap Swoffer	16	1.8
B4 Swoffer Meter	15	6
MID Cipoletti Weir	15	0
LNID B9 BCW	6	2.5
AAF Magmeter Low Noise	3	7
AAF Magmeter Normal	3	2.5
Overall Average %		2.32

Stream Pro ADCP overall accuracy is 2.3%

Findings show better accuracy at higher flows

Stream Pro ADCP accuracy in relation to flow volume

Streampro ADCP Flow Comparisons

Contracted Rectangular Weir

Suppressed Rectangular Weir

B. Suppressed (without end contractions)

Cipoletti Weir

2Hmax minimum

V Notch Weir

Broad-Crested Weir aka Long Throated Flume or Replogle

Broad-Crested Weir

WinFlume Software www.usbr.gov

Circular Flume

Circular Flume Advantages:

-Accurate
-Easy to construct
-Use scrap PVC pipe
-Requires no elevation drop
-No pooling upstream
-Portable

Work Hazards!

Typical Flow Site:

-Measurement Device -Stilling Well -Instrumentation to record depth or flow volume every 15 minutes -Can be datalogged or realtime -Staff gauge must be upstream away from draw down -Site is visited and metered

Instrumentation: -Remote logging -Records water level -Logs it in 20 min or hourly intervals -Realtime option: transmit to internet via cell or satellite technology

An alternative to stilling wells:

- In-Situ Troll 500 or 700
- Replaces logger, float & well
- Measures depth & temp
- Placed on canal bed (anchored)
- Easy to use software

AquaSystems 2000 Langemann Gate

Armtec Gate

Flow Measurement in **Pressurised Pipelines:** There are lots of choices! What to choose? **Some practical considerations:** What's the application? (Why meter? Permanent v.s. spot check.) Meter placement: straight pipe? •Accuracy? Cost?
 Installation Method? •Which technology to choose?

Discharge = **velocity x area**

Pipeline flow meters: Installation Considerations

Straight pipe requirements!
Is there a suitable length of straight pipe available?

All pipe flow meters will specify a straight-pipe requirement.

Which Technology is best? Propeller Paddlewheel Electro magnetic meter Vortex shedding On-off switches Others: Venturi-cone, elbow meters, etc.

Electro-magnetic meters:

•'Mag' meters create a magnetic field in the flowing water. The induced voltage in the water indicates the flowrate.

•Advantages: Very accurate. Considered to be the industry standard.

•Disadvantages:

High power requirements. Not economic for all applications (\$2500 – \$10,000)

McCrometer M0300 Bolt On Saddle Model

- rugged
- <u>no</u> power required
 requires large hole for install
- accurate

Doppler Flow Meters:

- Insertion:

High accuracyExpensive ~\$2500

Strap on:
Doppler (~\$1700-\$4000)
Transit Time (~\$2500)
Advantages:
Non-invasive!

Greyline DFM-IV

Acoustic Doppler Technology
power required
requires no holes for installation
can install on any diameter pipe
no moving parts

Typical Milk River Flowmeter Site

2007 Milk River Flowmeter Results Summary

Flow meter	# Meters Installed	# Meters Flow tested	# Meters Achieving Measurements Within Indicated Accuracy Standard	
			Less than +/- 5%	More than +/- 5%
McCrometer M0300	14	9	9	
Seametrics EX 100/200	24	18	11	7
Greyline DFM IV	3	1	1	

ARD Water Quality Projects utilizing flow measurement equipment:

BMP Projects: Indianfarm Creek Basin: 22 sites with Circular Flumes, Trolls, Realtime Communication, Streampro ADCP and FlowTracker

Whelp Creek Basin: 22 sites with Circular Flumes, Trolls, Realtime Communication and FlowTracker

Indianfarm Creek

Whelp Creek

Flow Demonstration Site:

-Demonstrate the latest in water control & measurement

-Test existing and prototype equipment & technologies

-Act as a 3rd party neutral test facility to verify accuracy

ARD Flow Measurement Facility and Demonstration Site

"In Partnership with Industry"

ARD Flow Measurement Team:

Branch Head: Brent Paterson Section Head: Roger Hohm Engineer: Lloyd Healy Sr. Tech: Lawrence Schinkel **Instrumentation Tech: Brian Cook** Water Management Specialist: Jennifer Nitschelm Water Mmgmt Agrologist: Joel Cordes **Summer Staff: Brendan Coffey**

Thank You!

Questions?

